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1 Overview

The latest version of this walkthrough will always be available here.
This walkthrough provides step-by-step instructions describing an analysis pipeline from post-

alignment through QC, analysis, and the generation of summary visualizations for interpretation. Data
processing and quality control is performed by the QoRTs software package, differential gene expression
(DGE) analysis can be run via either DESeq2 or edgeR, and differential splicing analysis can be run
using JunctionSeq or DEXSeq.

This walkthrough centers around the QoRTs [5] software package, which is a fast, efficient, and
portable multifunction toolkit designed to assist in the analysis, quality control, and data management
of RNA-Seq datasets. Its primary function is to aid in the detection and identification of errors, biases,
and artifacts produced by paired-end high-throughput RNA-Seq technology. In addition, it can produce
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count data designed for use with differential expression 1 and differential exon usage tools 2, as well as
individual-sample and/or group-summary genome track files suitable for use with the UCSC genome
browser (or any compatible browser).

The QoRTs package is composed of two parts: a java jar-file (for data processing) and a companion R
package (for generating tables, figures, and plots). The java utility is written in the Scala programming
language (v2.11.1), however, it has been compiled to java byte-code and does not require an installation
of Scala (or any other external libraries) in order to function. The entire QoRTs toolkit can be used in
almost any operating system that supports java and R.

The most recent release of QoRTs is available on the QoRTs github page.
The latest version of this walkthrough is available online, along with a full example dataset (file is

200mb) with example bam files (file is 1.1gb).

2 Using this Walkthrough

This walkthrough demonstrates how the use of this pipeline on one particular example dataset. How-
ever, many of the scripts and commands used here could be used on any RNA-Seq dataset with minimal
modification. File locations will have to be modified, as well as the path to the java jar-file (in the
example scripts, it is softwareRelease/QoRTs.jar).

Additionally, in this example walkthrough all commands are carried out in series. In actual use,
it is generally recommended that separate runs be executed in separate threads simultaniously, or, if
available, separate jobs run on a cluster job-queuing engine (such as SGE). Example SGE scripts are
provided for this purpose.

3 Requirements

Hardware: The QoRTs [5] java utility does the bulk of the data processing, and will generally require
at least 4gb of RAM. In general at least 8gb is recommended, if available. The QoRTs R package is
only responsible for some light data processing and for plotting/visualization, and thus has much lower
resource requirements. It should run adequately on any reasonably-powerful workstation. In general,
it is preferable to run bioinformatic analysis on a dedicated linux-based cluster running some sort of
job-queuing engine.

Software: The QoRTs software package requires R version 3.0.2 or higher, as well as java 6 or higher.
It does not require any other software. Some of the other software packages used in this walkthrough
may have their own individual dependencies, which may be subject to change over time.

Annotation: QoRTs requires transcript annotations in the form of a gtf file. If you are using a
annotation guided aligner (which is STRONGLY recommended) it is likely you already have a transcript
gtf file for your reference genome. We recommend you use the same annotation gtf for alignment, QC,
and downstream analysis. We have found the Ensembl ”Gene Sets” gtf3 suitable for these purposes.
However, any format that adheres to the gtf file specification4 will work.

1Such as DESeq, DESeq2 [1] or edgeR [8]
2Such as DEXSeq [2] or JunctionSeq
3Which can be acquired from the Ensembl website at http://www.ensembl.org
4See the gtf file specification here
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3.1 Recommendations

Clipping: For the purposes of Quality Control, it is generally best if reads are NOT hard-clipped prior
to alignment. This is because hard clipping, espeically variable hard-clipping from both the start and
end of reads, makes it impossible to determine sequencer cycle from the aligned bam files, which in turn
can obfuscate cycle specific artifacts, biases, errors, and effects. If undesired sequence must be removed,
it is generally preferred to replace such nucleotides with N’s, as this preserves cycle information. Note
that many advanced RNA-Seq aligners will ”soft clip” nonmatching sequence that occurs on the read
ends, so hard-clipping low quality sequence is generally unnessessary and may reduce mapping rate
and accuracy.

Replicates: Using barcoding, it is possible to build a combined library of multiple distinct samples
which can be run together on the sequencing machine and then demultiplexed afterward. In general,
it is recommended that samples for a particular study be multiplexed and merged into ”balanced”
combined libraries, each containing equal numbers of each biological condition. If necessary, these
combined libraries can be run across multiple sequencer lanes or runs to achieve the desired read depth
on each sample.

In the example dataset, all samples were merged into a single combined library and run on three
sequencer lanes. The demultiplexed results were aligned seperately and produce seperate bam files. For
example, sample ”SAMP1” is composed of ”SAMP1 RG1.bam”, ”SAMP1 RG2.bam”, and ”SAMP1 RG3.bam”.
If preferred, these ”technical replicates” can be merged prior to alignment and analyzed seperately (see
section 12.1.1 for details on the --readGroup option).

3.2 Additional Software Used In This Walkthrough

This walkthrough describes the use of a number of different software packages.

� Aligners: There are a number of aligners available for aligning RNA-Seq data. Using aligners
other than RNA-STAR may require slight modification to the intial QoRTs data processing
run, see the QoRTs FAQ for more details.

– RNA-STAR [3] (Recommended)

– TopHat2 [6]

– GSNAP [9]

� Differential Gene Expression Analysis (DGE): These tools detect and assess differential
expression at the gene level.

– DESeq2 [1, 7] (Recommended)

– edgeR [8]

� Differential Splicing / Differential Isoform Regulation Analysis: These tools detect
and assess differential regulation of splice junctions and/or exonic regions as a proxy for
differentials in isoform-level expression.

– JunctionSeq (Our tool)

– DEXSeq [2]

� Other Tools

– QoRTs [5]: A Quality control and data processing utility.
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– samtools: A suite of data processing tools.

– Novosort: A fast and efficient tool for sorting BAM files.

– The UCSC genome browser: A viewer that allows browsing of genome-wide sequence
data in various forms.

– UCSC tools: Various tools for use with genomic data. In this walkthrough we use the
tools bedToBigBed wigToBigWig and fetchChromSizes to prep track files for use with
UCSC genome browser trackhubs.

4 Preparations

There are a number of processing steps that must occur prior to the creation of usable bam files. The
specifics of such steps is beyond the scope of this walkthrough. We will briefly go over the required
steps here:

4.1 Alignment

QoRTs [5] is designed to run on single-ended or paired-ended next-gen RNA-Seq data. The data must
be aligned (or ”mapped”) to a reference genome before QoRTs can be run. RNA-Star [3], GSNAP [9],
and TopHat2 [6] are all popular aligners for use with RNA-Seq data. The use of short-read or unspliced
aligners such as BowTie, ELAND, BWA, or Novoalign is NOT recommended.

We generally recommend RNA-STAR for most purposes.

4.2 Sorting

For paired-end data, QoRTs requires that the bam files be sorted by either read name or by position.
Sorting can be accomplished via the samtools or novosort tools (which are NOT included with QoRTs).
Sorting is unnecessary for single-end data.
To sort by position:

samtools sort SAMP1_RG1.raw.bam SAMP1_RG1

OR

novosort SAMP1_RG1.raw.bam > SAMP1_RG1.bam

The example dataset is already sorted by position.
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4.3 Bam file decoder

Several QoRTs functions will require a ”decoder” file, which describes each sample and all of its technical
replicates (if any). All of the columns are optional except for unique.ID.
Fields :

� unique.ID : A unique identifier for the row. THIS IS THE ONLY MANDATORY FIELD.

� lane.ID : The ID of the lane or batch. By default this will be set to ”UNKNOWN”.

� group.ID : The ID of the ”group”. For example: ”Case” or ”Control”. By default this will be set
to ”UNKNOWN”.

� sample.ID : The ID of the biological sample from which the data originated. Each sample can
have multiple rows, representing technical replicates (in which the same sample is sequenced on
multiple lanes or runs). By default QoRTs will assume that every row comes from a separate
sample, and will thus set the sample.ID to equal the unique.ID.

� qc.data.dir : The directory in which the java utility is to save all the QC data. If this column
does not exist, by default it will be set to the unique.ID.

� input.read.pair.count : The number of reads in the original fastq file, prior to alignment.

� multi.mapped.read.pair.count : The number of reads that were multi-mapped by the aligner.

In addition, the decoder can contain any other additional columns as desired, as long as all of the
column names are distinct.
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5 Example dataset

The example dataset is derived from a set of rat pineal gland samples, which were multiplexed and
sequenced across six sequencer lanes. All samples are paired-end, 2x101 base-pair, strand-specific RNA-
Seq. They were ribosome-depleted using the ”Ribo-zero Gold” protocol and aligned via RNA-STAR.

For the sake of simplicity, the example dataset was limited to only six samples and three lanes.
However, the bam files alone would still occupy 18 gigabytes of disk space, which would make it
unsuitable for distribution as an example dataset. To further reduce the example bamfile sizes, only
reads that mapped to chromosomes chr14, chr15, chrX, and chrM were included. Additionally, all the
selected chromosomes EXCEPT for chromosome 14 were randomly downsampled to 30 percent of their
original read counts. A few genes had additional fictional transcripts added, to test and demonstrate
various tools’ handling of certain edge cases. The original dataset from which these samples were derived
is described elsewhere [4]. The original complete dataset is available on the NCBI Gene Expression
Omnibus, series accession number GSE63309.

THIS DATASET IS INTENDED FOR DEMONSTRATION AND TESTING PURPOSES ONLY.
Due to the various alterations that have been made to reduce file sizes and improve portability, it is
really not suitable for any actual analyses.

5.1 Overview of example files

The ”input” data files are all found in the inputData/ directory:

� inputData/annoFiles/anno.gtf.gz: A truncated gtf file generated by extracting chromosome
14 from the ensembl Rattus_norvegicus.RGSC3.4.69.gtf transcript annotation file.

� inputData/annoFiles/chrom.sizes: A truncated chromosome sizes file generated by extracting
chromosomes 14, X, M, and loose chromosome 14 contigs from the chrom.sizes file generated by
the UCSC fetchChromSizes utility.

� inputData/annoFiles/decoder.bySample.txt: A sample decoder, which defines each sample’s
biological condition (CASE or CTRL).

� inputData/annoFiles/decoder.byUID.txt: A decoder that matches sample.ID to unique.ID,
matching technical replicates to their sample of origin. It also includes (optional) biological con-
dition information as well as input read pair counts and multimapping read pair counts acquired
from the aligner output.

� inputData/annoFiles/sampleID.list.txt: A simple text file containing the list of samples.

� inputData/annoFiles/uniqueID.list.txt: A simple text file containing the list of technical
replicates.

In addition, bam files for the 3 technical replicates for each of the 6 example samples are included
in the inputData/bamFiles/ directory.

5.2 Following along on your own

In order to follow along with this walkthrough, download the example dataset (file is 200mb) with
example bam files (file is 1.1gb).

This walkthrough assumes that analysis is being done in a Linux-like environment (bash). Most
commands can be adapted for other enviroments relatively easily, as QoRTs is not platform dependent.

All commands are executed from the root directory of the example dataset: QoRTsPipelineWalkthrough/.
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This example walkthrough will additionally the bioconductor packages: DESeq2, edgeR, and DEXSeq.
Additionally, you will need to install the JunctionSeq R package and the QoRTs R companion package.
It is recommended that you install the CRAN png package.

These packages can be installed with the R commands:

#RECOMMENDED CRAN package:

install.packages("png")

#REQUIRED bioconductor packages:

source("http://bioconductor.org/biocLite.R")

biocLite()

biocLite("DESeq2")

biocLite("DEXSeq")

biocLite("edgeR")

#Install JunctionSeq:

source("http://hartleys.github.io/JunctionSeq/install/JS.install.R");

JS.install();

#Install the QoRTs companion R Package:

install.packages("http://hartleys.github.io/QoRTs/QoRTs_LATEST.tar.gz",

repos=NULL,

type="source");

QoRTs R Package: It is generally preferable to download the most recent release of QoRTs, as
shown above. However the version of QoRTs used to generate the example output data contained in
this walkthrough is included with the example dataset. This version of QoRTs can be installed using
the console command:

R CMD INSTALL softwareRelease/QoRTs_<versionNumber>.tar.gz

Again, this command must be executed from the root directory of the example dataset (QoRTsPipelineWalkthrough/).
The example dataset comes with all output already generated. In order to delete this pre-generated

output and ”start from scratch”, run the script:

sh exampleScripts/step0/step0.reset.sh
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6 Initial Data Processing (STEP 1)

The first step is to process the aligned RNA-Seq data using QoRTs [5]. The bulk of the data-processing
is performed by the QoRTs.jar java utility. This tool produces an array of output files, analyzing and
tabulating the data in various ways. This utility requires about 10-20gb of RAM for most genomes,
and takes roughly 4 minutes to process 1 million read-pairs.

To perform this analysis on SAMP1_RG1.bam, use the command:

mkdir outputData/qortsQcData/SAMP1_RG1/

java -Xmx1G -jar softwareRelease/QoRTs.jar QC \

--stranded \

--chromSizes inputData/annoFiles/chrom.sizes \

inputData/bamFiles/SAMP1_RG1.bam \

inputData/annoFiles/anno.gtf.gz \

outputData/qortsQcData/SAMP1_RG1/

To run the example set on each bam file, you can use the commands:

while read line

do

mkdir outputData/qortsData/$line/

java -Xmx1G -jar softwareRelease/QoRTs.jar \

QC \

--stranded \

--chromSizes inputData/annoFiles/chrom.sizes \

inputData/bamFiles/$line.bam \

inputData/annoFiles/anno.gtf.gz \

outputData/qortsData/$line/

done < "inputData/annoFiles/uniqueID.list.txt"

Note that the --chromSizes option is optional, but causes QoRTs to additionally generate ”wiggle”
coverage files for each replicate. Note that this also increases the memory usage of QoRTs considerably.
If you are having memory-usage issues, you may want to eliminate this option.

The bam processing tool includes numerous options. A full description of these options can be
found by entering the command:

java -jar softwareRelease/QoRTs.jar QC --man

There are a number of crucial points that require attention when using the QoRTs.jar QC command.
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� MAPQ filter: Most aligners designed for RNA-Seq use the MAPQ field to define whether or not
a read is multi-mapped. However, different aligners use different conventions. By default QoRTs
assumes the RNA-STAR convention in which a MAPQ of 255 indicates a unique alignment. For
TopHat, the --minMAPQ parameter must be set to 50. For GSNAP, the MAPQ behavior is not
well documented (or at least I have been unable to find such documentation), but a MAPQ
filtering threshold of 30 appears to work. See the FAQ for more information.

� Stranded Data: By default, QoRTs assumes that the data is NOT strand-specific. For strand-
specific data, the --stranded option must be used.

� Stranded Library Type: The --fr_secondStrand option may be required depending on the
stranded library type. QoRTs does not attempt to automatically detect the platform and protocol
used for stranded data. There are two types of strand-specific protocols, which are described by
the TopHat/CuffLinks documentation at as fr-firststrand and fr-secondstrand. In HTSeq,
these same library type options are defined as -s reverse and -s yes respectively. According
to the CuffLinks manual, fr-firststrand (the default used by QoRTs for stranded data) applies
to dUTP, NSR, and NNSR protocols, whereas fr-secondstrand applies to ”Directional Illumina
(ligation)” and ”Standard SOLiD” protocols. If you are unsure which library type applies to your
dataset, don’t worry: one of the tests will report stranded library type. If you use this test to
determine library type, be aware that you may have to re-run QoRTs with the correct library
type set.

� Read Groups: Depending on the production pipeline, each biological sample may be run across
multiple sequencer lanes. These seperate files can be merged together either before or after
analysis with QoRTs (and maybe even before alignment). However, if the merger occurs before
analysis with QoRTs, then each bam file will consist of multiple seperate lanes or runs. In this
case, it is STRONGLY recommended that seperate QC runs be performed on each ”read group”,
using the --readGroup option. This will prevent run- or lane-specific biases, artifacts, or errors
from being obfuscated.

� Read Sorting: For paired-end data reads must be sorted by either name or position (under the
default mode, it does not matter which). QoRTs can also be run in name-sorted-only mode using
the ”–nameSorted” option, which explicitly requires name-sorted data but may run faster and
with lower memory overhead.

� Single-end vs paired-end: By default, QoRTs assumes the input bam file consists of paired-end
data. For single-end data, the --singleEnded option must be used.

� ’Wiggle’ Browser Tracks: ’.wig’ browser tracks can also be produced in this step. See Section 12
for more information.

� Junction Browser Tracks: ’.bed’ junction depth browser tracks can also be produced in this step.
See Section 12 for more information.

6.1 Memory Usage

Memory usage: The QoRTs QC utility requires at least 4gb or RAM for most genomes / datasets.
Larger genomes, genomes with more annotated genes/transcripts, or larger bam files may require more
RAM. You can set the maximum amount of RAM allocated to the JVM using the options -Xmx4000M.
This should be included before the -jar in the command line. This option can be used with any and
all of the QoRTs java utilities. Because the example dataset and genome is so small, 1 gigabyte of
RAM is more than sufficient.
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7 Generating Counts and QC plots (Step 2)

Once the data has been processed, you can read the QC data produced by QoRTs [5] into R using the
command:

library(QoRTs);

#Read in the QC data:

res <- read.qc.results.data("outputData/qortsData/",

decoder.files = "inputData/annoFiles/decoder.byUID.txt",

calc.DESeq2 = TRUE, calc.edgeR = TRUE);

Once you have read in the QC data, you can build all sorts of plots. See Figure 1 for one example5.
EXAMPLE 1: The makeMultiPlot.all can be used to automatically generate a full battery of

multi-plot figures:

makeMultiPlot.all(res,

outfile.dir = "outputData/qortsPlots/summaryPlots/",

plot.device.name = "png");

EXAMPLE 2: Some users may find the large png files difficult to read. QoRTs offers multi-page
pdf reports as an alternative, simply by using the plot.device.name parameter:

makeMultiPlot.all(res,

outfile.dir = "outputData/qortsPlots/summaryPDFs/",

plot.device.name = "pdf");

EXAMPLE 3: To print all the basic plots as seperate pngs, use the command:

makeMultiPlot.basic(res,

outfile.dir = "outputData/qortsPlots/basicPlots/",

separatePlots = TRUE);

Note that this produces a huge number of png files.
A full description of all quality control plots produced by these commands is beyond the scope of

this walkthrough. See the QoRTs package vignette for more information.

7.1 Extract Size Factors

If DESeq2 and/or edgeR are installed, QoRTs will automatically generate ”library size factors” using
the algorithms provided by each. These ”size factors” are used to ”normalize” all samples to a common,
comparable scale. This is necessary in order to directly compare between samples, and thus size factors
are required for several downstream analyses. To extract these size factors, use the R commands:

5Note: to reduce the pdf file size, the resolution is lower than the default value.
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Figure 1: An example combined multi-plot. In this example, replicates are differentiated by color and
pch symbol based on the group.ID (ie CASE or CTRL).

get.size.factors(res, outfile = "outputData/sizeFactors.GEO.txt");
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8 Examine Data for Quality Control Issues (STEP 3)

Once the quality control plots have been generated, you must examine them to determine if any quality
control issues do exist. For the example dataset these plots are available in the outputData/qortsPlots/
directory.

QoRTs [5] produces a vast array of output data, and the interpretation of said data can be difficult.
Proper quality control must consider the study design, sequencer technology, study species, read length,
library preparation protocol, and numerous other factors that might affect the metrics produced by
QoRTs. In some datasets, apparent ”abnormalities” may be expected. Similarly, depending on the
type of downstream analysis that is being performed, some errors or artifacts may be irrelevant.

When an unexplained abnormality is recognized, one must decide what to do with the data. Unfor-
tunetely this question is nontrivial, and depends on numerous factors. Bioinformaticians must be aware
of the statistical assumptions that are being made in the downstream analyses, and must consider the
conditions under which such assumptions would be violated.

Some abnormalities will not affect a given analysis and thus can be ignored outright. Some may
require that the offending sample(s) be removed from the analysis. Others may necessitate additional
steps to normalize the data or adjust for confounding factors. And finally, some artifacts may be so
severe that the intended analysis will be impossible using the supplied data. Ultimately bioinformati-
cians must use their own judgement to determine what action should be taken, should an abnormality
be discovered

See Section 7 and 8 of the QoRTs vignette for more information.
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9 Merge Technical Replicates (STEP 4)

In many RNA-Seq datasets, individual samples/libraries are run across multiple sequencing lanes,
producing ”technical replicates” of the same original biological samples. For the purposes of quality
control it is generally best to run QC tools separately on each technical replicate, so that lane- or run-
specific errors and artifacts are not obscured. However, for the purposes of most downstream analyses,
it is generally preferable to merge the technical replicates for each sample. Thus, QoRTs [5] contains
methods allowing count data to be combined across technical replicates.

If the dataset contains no technical replicates then this step is unnecessary.
To merge the count data of all technical replicates:

java -jar softwareRelease/QoRTs.jar \

mergeAllCounts \

outputData/qortsData/ \

inputData/annoFiles/decoder.byUID.txt \

outputData/countTables/

This requires a decoder file, identical to the one used for QC in section 12.2. The only required
fields are unique.ID and sample.ID.

Alternatively, an individual set of technical replicates can be merged using the command:

java -jar softwareRelease/QoRTs.jar \

mergeCounts \

outputData/qortsData/SAMP1_RG1/,outputData/qortsData/SAMP1_RG2/,o\

utputData/qortsData/SAMP1_RG3/ \

outputData/countTables/SAMP1/

More details on parameters and options available for this function can be accessed with the com-
mands:

java -jar softwareRelease/QoRTs.jar mergeCounts --man

and

java -jar softwareRelease/QoRTs.jar mergeAllCounts --man
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10 Perform Differential Gene Expression Analyses (STEP 5)

QoRTs [5] produces output that is designed to be read by several different analyses tools designed to
detect differential gene expression or other forms of differential regulation. It is designed to produce
data identical to the data created by the HTSeq package.

10.1 Perform DGE analysis with DESeq2

DESeq2 [1] is designed to detect gene-level differential expression in RNA-Seq data. As part of its
initial processing QC run (see section 12.1.1), QoRTs produces count files similar to those expected by
DESeq2.

The merged output produced by QoRTs mimics the output of HTSeq. Thus, we use the same
syntax found in section 1.2.4 of the DESeq2 vignette (the section titled ”HTSeq Input”).

suppressPackageStartupMessages(library(DESeq2));

decoder.bySample <- read.table(

"inputData/annoFiles/decoder.bySample.txt",

header=T,stringsAsFactors=F);

directory <- "outputData/countTables/";

sampleFiles <- paste0(

decoder.bySample$sample.ID,

"/QC.geneCounts.formatted.for.DESeq.txt.gz"

);

sampleCondition <- decoder.bySample$group.ID;

sampleName <- decoder.bySample$sample.ID;

sampleTable <- data.frame(sampleName = sampleName,

fileName = sampleFiles,

condition = sampleCondition);

dds <- DESeqDataSetFromHTSeqCount(sampleTable = sampleTable,

directory = directory,

design = ~ condition);

dds;

Once the data is loaded into a DESeqDataSet, all desired DESeq2 analyses can then be run, exactly
as described in the DESeq2 vignette. For example, the basic analysis would be run using the commands:

dds <- DESeq(dds);

res <- results(dds);

res
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10.2 Optional Alternative: Perform DGE analysis with edgeR

edgeR [8] performs Differential expression analysis of RNA-seq and digital gene expression profiles with
biological replication. It uses empirical Bayes estimation and either exact tests and/or generalized
linear models, based on the negative binomial distribution. As with DESeq2, The count data produced
by QoRTs can be used by edgeR.

edgeR requires slightly more manipulation to put the count data in a format that it expects:

suppressPackageStartupMessages(library(edgeR));

decoder.bySample <- read.table(

"inputData/annoFiles/decoder.bySample.txt",

header=T,stringsAsFactors=F);

directory <- "outputData/countTables/";

files <- paste0(directory,

decoder.bySample$sample.ID,

"/QC.geneCounts.formatted.for.DESeq.txt.gz"

);

countData <- lapply(files, function(f){
ct <- read.table(f,header=F,stringsAsFactors=F)$V2;

ct <- ct[1:(length(ct)-5)]

});

countMatrix <- do.call(cbind.data.frame,countData);

colnames(countMatrix) <- decoder.bySample$sample.ID;

rownames(countMatrix) <- read.table(files[1],header=F,

stringsAsFactors=F)$V1[1:nrow(countMatrix)]

group <- factor(decoder.bySample$group.ID);

From here, the data is ready for use with edgeR. edgeR can be run as shown in the ”Quick Start”
example in the edgeR user guide. For example, to perfom a standard analysis based on generalized
linear models:

design <- model.matrix(~group)

y <- DGEList(counts = countMatrix, group = group);

y <- calcNormFactors(y)

y <- estimateGLMCommonDisp(y,design)

y <- estimateGLMTrendedDisp(y,design)

y <- estimateGLMTagwiseDisp(y,design)

fit <- glmFit(y,design)

lrt <- glmLRT(fit,coef=2)

topTags(lrt)
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11 Perform Differential Splicing Analyses (STEP 6)

In addition to differential gene expression which tests entire genes for differential expression, some genes
may exhibit isoform-level differential regulation. In these genes, individual isoforms (or ”transcripts”)
may be differentially up or down regulated. This may occur with or without differential regulation of
the other isoforms or of the gene as a whole.

There are a number of tools that can be used for detecting such differentials.

11.1 Generate ”flat” annotation files

DEXSeq requires a ”flattened” gff files, in which overlapping genes are compiled and a flat set of exons
is generated and assigned unique identifiers. QoRTs has extended this notation to additionally assign
unique identifiers to every splice junction as well. These assignments can be generated and accessed
using the command:

java -Xmx1G -jar softwareRelease/QoRTs.jar \

makeFlatGff \

--stranded \

inputData/annoFiles/anno.gtf.gz \

outputData/forJunctionSeq.gff.gz

This gff file can be used to create splice junction tracks (but is NOT required to do so).
To generate a flat annotation file that is formatted for use with the DEXSeq package, use the

command:

java -Xmx1G -jar softwareRelease/QoRTs.jar \

makeFlatGff \

--stranded \

--DEXSeqFmt \

inputData/annoFiles/anno.gtf.gz \

outputData/forDEXSeq.gff.gz

More details on parameters and options available for this function can be accessed with the com-
mand:

java -jar softwareRelease/QoRTs.jar makeFlatGff --man
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11.1.1 Add Novel Junctions

The initial JunctionSeq input files produced by QoRTs only include annotated splice junctions. QoRTs
includes all novel splice junctions, but they are counted seperately and not assigned unique cross-sample
identifiers. It may be desirable to visually inspect or test novel splice junctions as well. However, some
aligners may produce large numbers of extremely-low-coverage splice junctions. To filter out such
junctions and produce unique identifiers for every splice junction locus that passes the filter, use the
command:

java -Xmx1G -jar softwareRelease/QoRTs.jar \

mergeNovelSplices \

--minCount 6 \

--stranded \

outputData/countTables/ \

outputData/sizeFactors.GEO.txt \

inputData/annoFiles/anno.gtf.gz \

outputData/countTables/

This will perform two functions: first it will produce a ”flattened” gff file containing unique identifiers
for all splice junctions that pass the given filter. Secondly, it produces new splice junction count files
for each sample, which match the new flattened gtf.

More details on parameters and options available for this function can be accessed with the com-
mand:

java -jar softwareRelease/QoRTs.jar mergeNovelSplices --man

11.2 Perform Analysis with JunctionSeq

We have developed the JunctionSeq R package, which operates on the same basic principles as the
DEXSeq bioconductor package but can also test for differential usage of known or novel splice junctions.
Details and documentation for the JunctionSeq package are available online. For a more in-depth
description of how to use JunctionSeq, see the JunctionSeq vignette.

JunctionSeq can be installed with the simple command:

source("http://hartleys.github.io/JunctionSeq/install/JS.install.R");

JS.install();

This calls a simple helper script that installs all prerequisite packages and then installs the Junc-
tionSeq package itself. If you encounter any problems you may need to install JunctionSeq manually.
See the JunctionSeq FAQ for more information.
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11.2.1 Simple analysis pipeline

JunctionSeq includes a single function that loads the count data and performs a full analysis auto-
matically. This function internally calls a number of sub-functions and returns a JunctionSeqCountSet
object that holds the analysis results, dispersions, parameter estimates, and size factor data.

#Load JunctionSeq:

library("JunctionSeq");

#The sample decoder:

decoder <- read.table(

"inputData/annoFiles/decoder.bySample.txt",

header=T,stringsAsFactors=F);

#The count files:

countFiles <- paste0(

"outputData/countTables/",

decoder$sample.ID,

"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"

);

#Run the analysis:

jscs <- runJunctionSeqAnalyses(

sample.files = countFiles,

sample.names = decoder$sample.ID,

condition = decoder$group.ID,

flat.gff.file = "outputData/countTables/withNovel.forJunctionSeq.gff.gz",

nCores = 1,

verbose=TRUE,

debug.mode = TRUE

);

The default analysis type, which is explicitly set in the above command, performs a ”hybrid” analysis
that tests for differential usage of both exons and splice junctions simultaniously. The methods used
to test for differential splice junction usage are extremely similar to the methods used for differential
exon usage other than the fact that the counts are derived from splice sites rather than exonic regions.
These methods are based on the methods used by the DEXSeq package [2, 7].

The advantage to our method is that reads (or read-pairs) are never counted more than once in any
given statistical test. This is not true in DEXSeq, as the long paired-end reads produced by current
sequencers may span several exons and splice junctions and thus be counted several times. Our method
also produces estimates that are more intuitive to interpret: our fold change estimates are defined as
the fold difference between two conditions across a transcript sub-feature relative to the fold change
between the same two conditions for the gene as a whole. The DEXSeq method instead calculates a
fold change relative to the sum of the other sub-features, which may change depending on the analysis
inclusion parameters.
The above function has a number of optional parameters, which may be relevant to some analyses:

analysis.type : By default JunctionSeq simultaniously tests both splice junction loci and exonic regions
for differential usage (a ”hybrid” analysis in which both exons and splice junctions are tested). This
parameter can be used to limit analyses specifically to either splice junction loci or exonic regions.
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nCores : The number of cores to use (note: this will only work when package BiocParallel is used on a
Linux-based machine. Unfortunately R cannot run multiple threads on windows at this time).

meanCountTestableThreshold : The minimum normalized-read-count threshold used for filtering out low-
coverage features.

test.formula0 : The model formula used for the null hypothesis in the ANODEV analysis.

test.formula1 : The model formula used for the alternative hypothesis in the ANODEV analysis.

effect.formula : The model formula used for estimating the effect size and parameter estimates.

geneLevel.formula : The model formula used for estimating the gene-level expression.

A full description of all these options and how they are used can be accessed using the command:

help(runJunctionSeqAnalyses);

11.2.2 Extracting test results

Once the differential splice junction usage analysis has been run, the results, including model fits, fold
changes, p-values, and coverage estimates can all be written to file using the command:

writeCompleteResults(jscs,

outfile.prefix="outputData/analyses/JunctionSeq/",

save.jscs = TRUE

);

This produces a series of output files. The main results files are allGenes.results.txt.gz and sigGenes.results.txt.gz.
The former includes rows for all genes, whereas the latter includes only genes that have one or more
statistically significant differentially used splice junction locus. The columns for both are:

� featureID : The unique ID of the exon or splice junction locus.

� geneID : The unique ID of the gene.

� countbinID : The sub-ID of the exon or splice junction locus.

� testable: Whether the locus has sufficient coverage to test.

� dispBeforeSharing : The locus-specific dispersion estimate.

� dispFitted : The the fitted dispersion.

� dispersion: The final dispersion used for the hypothesis tests.

� pvalue: The raw p-value of the test for differential usage.

� padjust : The adjusted p-value, adjusted using the ”FDR” method.

� chr, start, end, strand : The (1-based) positon of the exonic region or splice junction.

� transcripts : The list of known transcripts that contain this splice junction. Novel splice junctions
will be listed as ”UNKNOWN TX”.

� featureType: The type of the feature (exonic region, novel splice junction or known splice junction)

� baseMean: The base mean normalized coverage counts for the locus across all conditions.

� HtestCoef(A/B): The interaction coefficient from the alternate hypothesis model fit used in the
hypothesis tests. This is generally not used for anything but may be useful for certain testing
diagnostics.
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� log2FC(A/B): The estimated log2 fold change found using the effect-size model fit. This is
calculated using a different model than the model used for the hypothesis tests.

� log2FCvst(A/B): The estimated log2 fold change between the vst-transformed estimates. This
can be superior to simple fold-change estimates for the purposes of ranking effects by their effect
size. Simple fold-change estimates can be deceptively high when expression levels are low.

� expr A: The estimate for the mean normalized counts of the feature in group A.

� expr B : The estimate for the mean normalized counts of the feature in group B.

� geneWisePadj : The gene-level q-value, for the hypothesis that one or more features belonging
to this gene are differentially used. This value will be the same for all features belonging to the
same gene.

Note: If the biological condition has more than 2 categories then there will be multiple columns
for the HtestCoef and log2FC. Each group will be compared with the reference group. If the supplied
condition variable is supplied as a factor then the first ”level” will be used as the reference group.

There will also be a file labelled ”sigGenes.genewiseResults.txt.gz”, which includes summary infor-
mation for all statistically-significant genes:

� geneID : The unique ID of the gene.

� chr, start, end, strand : The (1-based) positon of the exonic region or splice junction.

� baseMean: The base mean normalized coverage counts for the gene across all conditions.

� geneWisePadj : The gene-level q-value, for the hypothesis that one or more features belonging
to this gene are differentially used. This value will be the same for all features belonging to the
same gene.

� mostSigID : The sub-feature ID for the most significant exon or splice-junction belonging to the
gene.

� mostSigPadjust : The adjusted p-value for the most significant exon or splice-junction belonging
to the gene.

� numExons : The number of (known) non-overlapping exonic regions belonging to the gene.

� numKnown: The number of known splice junctions belonging to the gene.

� numNovel : The number of novel splice junctions belonging to the gene.

� exonsSig : The number of statistically significant non-overlapping exonic regions belonging to the
gene.

� knownSig : The number of statistically significant known splice junctions belonging to the gene.

� novelSig : The number of statistically significant novel splice junctions belonging to the gene.

� numFeatures : The columns numExons, numKnown, and numNovel, separated by slashes.

� numSig : The columns exonsSig, knownSig, and novelSig, separated by slashes.

The writeCompleteResults function also writes a file: allGenes.expression.data.txt.gz. This file
contains the raw counts, normalized counts, expression-level estimates by condition value (as normalized
read counts), and relative expression estimates by condition value. These are the same values that are
plotted in Section 11.2.3.

Finally, this function also produces splice junction track files suitable for use with the UCSC genome
browser or the IGV genome browser. These files are described in detail in Section 12.1.2. If the save.jscs
parameter is set to TRUE, then it will also save a binary representation of the JunctionSeqCountSet
object.

21



11.2.3 Visualization and Interpretation

The interpretation of the results is almost as important as the actual analysis itself. Differential splice
junction usage is an observed phenomenon, not an actual defined biological process. It can be caused
by a number of underlying regulatory processes including alternative start sites, alternative end sites,
transcript truncation, mRNA destabilization, alternative splicing, or mRNA editing. Depending on
the quality of the transcript annotation, apparent differential splice junction usage can even be caused
by simple gene-level differential expression, if (for example) a known gene and an unannotated gene
overlap with one another but are independently regulated.

Many of these processes can be difficult to discern and differentiate. Therefore, it is imperative that
the results generated by JunctionSeq be made as easy to interpret as possible.

JunctionSeq, especially when used in conjunction with the QoRTs software package, contains a
number of tools for visualizing the results and the patterns of expression observed in the dataset.

buildAllPlots(

jscs=jscs,

FDR.threshold = 0.01,

outfile.prefix = "outputData/analyses/JunctionSeq/results/",

variance.plot = TRUE,

ma.plot = TRUE,

rawCounts.plot=TRUE,

verbose = TRUE);

This will produce 4 subdirectories in the ”plots” directory. Each sub-directory will contain 1 figure
for each gene that contains one or more exons or junctions that achieves genome-wide statistical signifi-
cance. Alternatively, plots for manually-specified genes can be generated using the gene.list parameter,
which overrides the FDR.threshold parameter.

It will also produce an html file ”testForDU.html”, which will allow the user to browse and view all
the plots produced by JunctionSeq.

11.3 Optional Alternative: Perform analysis with DEXSeq

DEXSeq [2] is another bioconductor-based tool designed to detect ”differential exon usage” (DEU), as
a proxy for detecting differentials in transcript-level expression regulation. QoRTs produces count files
designed specifically for use with DEXSeq as part of its initial processing QC run (see section 12.1.1).
In addition, DEXSeq requires a special ”flattened” gff file, which QoRTs is also capable of generating
(see section 11.1). IMPORTANT NOTE: the count files and the flattened gff file MUST be generated
using the same strandedness mode (ie. with or without the --stranded option).

The syntax used by DEXSeq has changed repeatedly between different versions, and may change
again in the future. This walkthrough was written for use with DEXSeq version 1.12.1.

The DEXSeq-formatted data will use the file name "QC.exonCounts.formatted.for.DEXSeq.txt.gz".
The data can be loaded into DEXSeq using commands almost identical to those found in the DEXSeq

package vignette:

suppressPackageStartupMessages(library(DEXSeq));

decoder <- read.table(

"inputData/annoFiles/decoder.bySample.txt",

header=T,stringsAsFactors=F);
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directory <- "outputData/countTables/";

countFiles <- paste0(

directory,

decoder$sample.ID,

"/QC.exonCounts.formatted.for.DEXSeq.txt.gz"

);

dexseq.gff <- "outputData/forDEXSeq.gff.gz";

sampleTable <- data.frame(

row.names = decoder$sample.ID,

condition = decoder$group.ID

);

dxd <- DEXSeqDataSetFromHTSeq(

countFiles,

sampleData = sampleTable,

design = ~sample + exon + condition:exon,

flattenedfile=dexseq.gff

);

From here, any desired DEXSeq analyses can be run, as described in the package vignette.
For example, the basic DEU analysis can be run using the commands:

dxd <- estimateSizeFactors(dxd)

dxd <- estimateDispersions(dxd)

dxd <- testForDEU(dxd);

dxd <- estimateExonFoldChanges(dxd, fitExpToVar = "condition");

dxres <- DEXSeqResults(dxd);

dxres

The DEU analysis results can then be written to file:

write.table(dxres, file = "outputData/analyses/DEXSeq/DEXSeq.results.txt");
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12 Generating Browser Tracks (STEP 7)

For the purposes of examining transcript abundances as well as visually confirming the results of tran-
script deconvolution or transcript assembly tools, QoRTs provides functions for generating genome
browser tracks that display coverage across both genomic regions and across splice junctions. Junc-
tionSeq produces similar browser tracks using the GLM modeling to produce coverage estimates and
p-values.

QoRTs can generate both single-sample or single-replicate tracks, or summary tracks that calculates
normalized mean coverage information across multiple samples.

An example of the browser track based visualizations available via this pipeline can be found here.
This browser session uses a browser trackhub described in Section ??. The trackhub can be found here.

12.1 Individual-Sample Tracks

12.1.1 Make sample wiggle tracks

To generate ”wiggle” tracks for a replicate, you can use the command:
In this walkthrough, the replicate and sample wiggle tracks are already generated as part of the

main data processing pipeline in Section and 9 respectively. However, these files can also be generated
manually with the following command:

java -Xmx1G -jar softwareRelease/QoRTs.jar \

bamToWiggle \

--stranded \

--windowSize 100 \

--negativeReverseStrand \

--includeTrackDefLine \

--rgbColor 0,0,0 \

inputData/bamFiles/SAMP1_RG1.bam \

SAMP1_RG1 \

inputData/annoFiles/chrom.sizes \

outputData/qortsData/SAMP1_RG1/QC.wiggle

To generate wiggle tracks for all bam files:

while read line

do

java -Xmx1G -jar softwareRelease/QoRTs.jar \

bamToWiggle \

--stranded \

--windowSize 100 \

--negativeReverseStrand \

--includeTrackDefLine \
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--rgbColor 0,0,0 \

inputData/bamFiles/$line.bam \

$line \

inputData/annoFiles/chrom.sizes \

outputData/qortsData/$line/QC.wiggle

done < "inputData/annoFiles/uniqueID.list.txt"

These tracks can be loaded and viewed in the UCSC genome browser. See Figure 2 for an example.

Figure 2: A pair of wiggle tracks generated for SAMP1. The top wiggle track plots the average coverage
depth over the forward strand, the lower wiggle track plots the average coverage depth over the reverse
strand. This track can be viewed on the UCSC browser here

More details on parameters and options available for this function can be accessed with the com-
mands:

java -jar softwareRelease/QoRTs.jar bamToWiggle --man
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It is generally easiest to generate the wiggle files during the initial processing step, as shown in
Section 12.1.1). However, this requires the --chromSizes parameter be set to the chrom.sizes file. The
additional option trackTitlePrefix can be used to set the wiggle track’s title.

So, for example, to generate all QC data and wiggle tracks simultaniously in a single bam-file pass:

java -Xmx1G -jar softwareRelease/QoRTs.jar QC \

--stranded \

--chromSizes inputData/annoFiles/chrom.sizes \

--trackTitlePrefix SAMP1_RG1_WIGGLE \

inputData/bamFiles/SAMP1_RG1.bam \

inputData/annoFiles/anno.gtf.gz \

outputData/qortsQcData/SAMP1_RG1/
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12.1.2 Make sample junction tracks

QoRTs also includes utilities for creating splice junction coverage tracks for individual samples. See
Figure 3 for an example, shown alongide wiggle tracks generated in Section 9.

Figure 3: An example of the tracks that can be produced in this section. Each annotated splice junction
locus has a identifier unique for each gene (example: J017). After the identifier, the number of reads
(or read-pairs) that bridge the given splice junction locus is listed in parentheses. This track can be
viewed on the UCSC browser here.

A splice junction coverage count bed file can be generated for sample SAMP1 using the command:

java -Xmx1G -jar softwareRelease/QoRTs.jar \

makeJunctionTrack \

--nonflatgtf \

--stranded \

--filenames outputData/countTables/SAMP1/QC.spliceJunctionAndExonCounts.\

forJunctionSeq.txt.gz \

inputData/annoFiles/anno.gtf.gz \

outputData/countTables/SAMP1/QC.junctionBed.known.bed.gz

Or, to generate this file for every sample:

while read line

do

java -Xmx1G -jar softwareRelease/QoRTs.jar \

makeJunctionTrack \

--nonflatgtf \

--stranded \

--filenames outputData/countTables/$line/QC.spliceJunctionAndExonCounts.\
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forJunctionSeq.txt.gz \

inputData/annoFiles/anno.gtf.gz \

outputData/countTables/$line/QC.junctionBed.known.bed.gz

done < "inputData/annoFiles/sampleID.list.txt"

More details on parameters and options available for this function can be accessed with the com-
mand:

java -jar softwareRelease/QoRTs.jar makeJunctionTrack --man
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12.1.3 Make sample junction tracks with novel junctions

Once the flattened annotation and count files which include the novel splice junctions has been generated
(see Section 12.1.3), a bed file can be produces which includes all such novel splices. Note that identifier
codes of novel splice junctions will be named with N’s. Chimeric or cross-gene junctions will be ignored
(but can still be found in the orphan junction gff file).

while read line

do

java -Xmx1G -jar softwareRelease/QoRTs.jar \

makeJunctionTrack \

--filenames outputData/countTables/$line/QC.spliceJunctionAndExonCounts.wi\

thNovel.forJunctionSeq.txt.gz \

outputData/countTables/withNovel.forJunctionSeq.gff.gz \

outputData/countTables/$line/QC.junctionBed.withNovel.bed.gz

done < "inputData/annoFiles/sampleID.list.txt"

More details on parameters and options available for this function can be accessed with the com-
mand:

java -jar softwareRelease/QoRTs.jar makeJunctionTrack --man
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12.2 Generate Summary Genome Tracks

While for small datasets it may be reasonable to visually inspect individual-sample browser tracks, for
larger datasets this quickly becomes untenable. Thus, QoRTs includes functions for compiling multiple
wiggle or junction-count browser tracks by normalized mean coverage. Note that this requires size
factors for use in normalizing all the samples to a comparable scale. See Section for more details about
how to extract size factors from the QoRTs output data. See Figure 4 for an example.

Figure 4: An example of the tracks that can be produced in Section 12.2. The first track
(”CTRL FWD”) shows the mean normalized coverage depth for 100-base-pair windows for the for-
ward (genomic) strand. The second track reveals the coverage depth on the negative strand (plotted
as negative values). The third track (”CASEvCTRL Mean Normalized Splice Junction coverage”)
displays the locus ID for each splice junction, along with the mean normalized coverage bridging each
splice junction locus in cases and in controls. Note that cases and controls are overlaid and colored
distinctly in the junction track. This track can be viewed on the UCSC browser here.
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12.2.1 Make summary wiggle tracks

QoRTs can generate compiled summary wiggle tracks, which display the mean normalized read-pair
coverage across multiple samples, over equal-sized windows across the entire genome.

Because there are two sets of wiggle files: forward and reverse strand (because this is stranded
data), this requires two separate commands:

java -Xmx1G -jar softwareRelease/QoRTs.jar \

mergeWig \

--calcMean \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.wiggle.fwd.wig.gz \

--sampleList SAMP1,SAMP2,SAMP3 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/mergedTracks/CASE.fwd.wig.gz

java -Xmx1G -jar softwareRelease/QoRTs.jar \

mergeWig \

--calcMean \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.wiggle.rev.wig.gz \

--sampleList SAMP1,SAMP2,SAMP3 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/mergedTracks/CASE.rev.wig.gz
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And, to do the same thing to the control set:

java -Xmx1G -jar softwareRelease/QoRTs.jar \

mergeWig \

--calcMean \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.wiggle.fwd.wig.gz \

--sampleList SAMP4,SAMP5,SAMP6 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/mergedTracks/CTRL.fwd.wig.gz

java -Xmx1G -jar softwareRelease/QoRTs.jar \

mergeWig \

--calcMean \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.wiggle.rev.wig.gz \

--sampleList SAMP4,SAMP5,SAMP6 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/mergedTracks/CTRL.rev.wig.gz

This tool is very flexible, and can be run on a number of different parameterizations. The ex-
ample script exampleScripts/step6/step6A.makeMergedWiggles.sh contains a number of example
variations.

More details on parameters and options available for this function can be accessed with the com-
mand:

java -jar softwareRelease/QoRTs.jar mergeWig --man
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12.2.2 Make summary junction tracks

QoRTs can also generate compiled summary junction-covarage tracks, which display the mean normal-
ized read-pair coverage across multiple samples for all annotated splice junctions.

This can be achieved with the command:

java -jar softwareRelease/QoRTs.jar \

makeJunctionTrack \

--calcMean \

--stranded \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.spliceJunctionAndExonCounts.forJunctionSeq.txt.gz \

--sampleList SAMP1,SAMP2,SAMP3 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/forJunctionSeq.gff.gz \

outputData/mergedTracks/CASE.bed.gz

To do the same thing for the CTRL group:

java -jar softwareRelease/QoRTs.jar \

makeJunctionTrack \

--calcMean \

--stranded \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.spliceJunctionAndExonCounts.forJunctionSeq.txt.gz \

--sampleList SAMP4,SAMP5,SAMP6 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/forJunctionSeq.gff.gz \

outputData/mergedTracks/CTRL.bed.gz
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A similar command can be used to include novel splice junctions, just like in section 12.1.3:

java -Xmx1G -jar softwareRelease/QoRTs.jar \

makeJunctionTrack \

--calcMean \

--stranded \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz \

--sampleList SAMP4,SAMP5,SAMP6 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/countTables/withNovel.forJunctionSeq.gff.gz \

outputData/mergedTracks/CTRL.withNovel.bed.gz

This tool is particularly flexible, and can be run on a number of different parameterizations. The ex-
ample script exampleScripts/step6/step6A.makeMergedWiggles.sh contains a number of example
variations.

More details on parameters and options available for this function can be accessed with the com-
mand:

java -jar softwareRelease/QoRTs.jar makeJunctionTrack --man
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12.2.3 Combine summary junction tracks

Combined junction tracks can be generated displaying the seperate groups in different colors. First
you must use the --rgb parameter to tell QoRTs to assign the given color to each group:

#Set cases to "red":

java -Xmx1G -jar softwareRelease/QoRTs.jar \

makeJunctionTrack \

--calcMean \

--stranded \

--rgb 150,0,0 \

--title CASE \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz \

--sampleList SAMP1,SAMP2,SAMP3 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/countTables/withNovel.forJunctionSeq.gff.gz \

outputData/mergedTracks/CASE.withNovel.red.bed.gz

#And then set CONTROLS to "blue":

java -Xmx1G -jar softwareRelease/QoRTs.jar \

makeJunctionTrack \

--calcMean \

--stranded \

--rgb 0,0,150 \

--title CTRL \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz \

--sampleList SAMP4,SAMP5,SAMP6 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/countTables/withNovel.forJunctionSeq.gff.gz \

outputData/mergedTracks/CTRL.withNovel.blue.bed.gz

These files can be merged simply by concatenation followed by sorting on the first and second
columns. We also need to remove the ”track” lines from each file. In linux/bash this can be accom-
plished with the commands:

zcat outputData/mergedTracks/CASE.withNovel.red.bed.gz \

outputData/mergedTracks/CTRL.withNovel.blue.bed.gz | \

grep -v "^track name" | \

sort -k1,1 -k2,2n | gzip - > outputData/mergedTracks/CASE.vs.CTRL.bed.gz
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12.2.4 Make and Combine ”orphan junction” tracks

By default, QoRTs and JunctionSeq only display splice junctions that span a single gene or group of
overlapping genes. Novel splice junctions that bridge disjoint genes, or novel junctions that do not
appear on any gene at all, are stored and counted separately as ”ambiguous” and ”orphan” junctions,
respectively.

Just like with the ”makeJunctionTrack” function, the ”makeOrphanJunctionTrack” command can
be used to create such summary plots. The only real difference is in the infileSuffix and the fact that
this function does not require any GFF file as input.

For example, the following command will produce a junction track analagous to the first one gen-
erated in the previous section:

#Set cases to "red":

java -Xmx1G -jar softwareRelease/QoRTs.jar \

makeOrphanJunctionTrack \

--calcMean \

--stranded \

--rgb 150,0,0 \

--title CASE \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.spliceJunctionCounts.orphanSplices.txt.gz \

--sampleList SAMP1,SAMP2,SAMP3 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/mergedTracks/CASE.orphan.red.bed.gz

#And then set CONTROLS to "blue":

java -Xmx1G -jar softwareRelease/QoRTs.jar \

makeOrphanJunctionTrack \

--calcMean \

--stranded \

--rgb 0,0,150 \

--title CTRL \

--infilePrefix outputData/countTables/ \

--infileSuffix /QC.spliceJunctionCounts.orphanSplices.txt.gz \

--sampleList SAMP4,SAMP5,SAMP6 \

--sizeFactorFile outputData/sizeFactors.GEO.txt \

outputData/mergedTracks/CTRL.orphan.blue.bed.gz

These tracks can be generated and combined exactly as in Section 12.2.3:

zcat outputData/mergedTracks/CASE.orphan.red.bed.gz \

outputData/mergedTracks/CTRL.orphan.blue.bed.gz | \

grep -v "^track name" | \

sort -k1,1 -k2,2n | gzip - > outputData/mergedTracks/CASE.vs.CTRL.orphan.bed.gz
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12.2.5 Junction Tracks Produced by JunctionSeq

In addition to performing the analysis and generating output plots, JunctionSeq produces a number of
browser tracks displaying summary information from the analysis.

The three main tracks are:

� allGenes.exonCoverage.bed: Displays all testable exonic regions, along with the GLM model
estimates for the number of reads or read-pairs per sample for each biological condition.

� allGenes.junctionCoverage.bed: Displays all testable splice junctions, along with the GLM model
estimates for the number of reads or read-pairs per sample for each biological condition.

� sigGenes.pvalues.bed: Shows the statistically significant loci and their adjusted p-values.

See 5 for an example of what these tracks look like. These files can be found in outputData/analyses/JunctionSeq/

Figure 5: The three main browser tracks produced by JunctionSeq. These tracks can be viewed on the
UCSC browser here
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12.3 Advanced: UCSC Browser TrackHubs

See Figure 6 for an example of how these summary tracks can be viewed via TrackHubs. This walk-
through only touches on a small fraction of the full capabilities of browser TrackHubs. For more
complete information, see the UCSC track database definition (here).

With trackHubs, you can display multiple wiggle plots on top of one another, allowing easy visual
comparisons between two or more conditions across the entire genome.

Figure 6: An example demonstrating how summary tracks can be viewed via the use of UCSC browser
trackhubs. The aggregate ”multiWig” track displays both cases and controls overlaid on top of one
another in different colors. In addition, the forward and reverse strands are also overlaid, with the
reverse strand displayed below zero. This track can be viewed on the UCSC browser here, and the hub
itself can be found here.

Hosting a trackhub requires that you have somewhere to post data to the internet in such a way
that it can be accessed by UCSC. If you do not have your own web host you can use a free service such
as GitHub or dropbox.
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12.3.1 Binary Conversion

TrackHub tracks require that data be converted into ”binary” format, which is faster and more compact
than the simpler text-based formats. This requires the UCSC tools wigToBigWig, bedToBigBed, and
textttfetchChromSizes. These can be found online here, along with the other UCSC tools.

”WIG” files must be converted to ”bigWig” files using the wigToBigWig utility:

wigToBigWig outputData/mergedTracks/CTRL.fwd.wig.gz \

inputData/annoFiles/rn6.chrom.sizes \

outputData/trackHub/rn6/tracks/CTRL.fwd.bw

wigToBigWig outputData/mergedTracks/CTRL.rev.wig.gz \

inputData/annoFiles/rn6.chrom.sizes \

outputData/trackHub/rn6/tracks/CTRL.rev.bw

Note that the chrom sizes file must generally be generated by the UCSC tool fetchChromSizes, or
else errors may occur.

”BED” files must similarly be converted to ”bigBed” files using the bedToBigBed utility. Note that
this utility requires that the bed lines be sorted, and cannot process gzip-compressed files or files that
begin with track or browser lines.

#Unzip the gzipped bed files, remove the track line and sort the results:

zcat outputData/analyses/JunctionSeq/allGenes.exonCoverage.bed.gz | \

tail -n+2 | \

sort -k1,1 -k2,2n > outputData/mergedTracks/JS/allGenes.exonCoverage.bed

#Convert this bed files into the binary "bigbed" format using the UCSC tool:

bedToBigBed outputData/mergedTracks/JS/allGenes.exonCoverage.bed \

inputData/annoFiles/rn6.chrom.sizes \

outputData/trackHub/rn6/tracks/JS.allGenes.exonCoverage.bb

This must be performed on all WIG and BED files that you wish to use with your trackHub.
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12.3.2 Trackhub Setup

The trackhub consists of 3 control files: genomes.txt, hub.txt, and trackDB.txt. An example of these
three files is included in the inputData/trackHubFiles/ directory.

The full trackhub for the walkthrough data can be found here. A UCSC browser session with this
trackhub loaded can be found here.

The ”hub” file specifies the hub and tells the browser where to find the genomes file:

hub QoRTs_Pipeline_Example_Hub_v0.2.8

shortLabel QoRTs_Pipeline_Example_Hub_v0.2.8

longLabel QoRTs_Pipeline_Example_Hub_v0.2.8

genomesFile genomes.txt

email stephen.hartley

The ”genomes” file specifies the genome and build, and directs the browser to the ”trackDB” file:

genome rn6

trackDb rn6/trackDb.txt

The above two files must be in the main hub directory. There must also be a sub-directory with
the same name as the genome.
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Finally, inside the genomes directory you must place a trackDb file. This file actually controls what
tracks to include and how they should be displayed. This file is similar to the ”track” lines of standard
UCSC browser track files, but with slightly different syntax. It allows the specification of ”multiwig”
tracks, which include multiple tracks plotted on top of one another on the same scale:

track CASEvCTRL_wiggle

container multiWig

aggregate transparentOverlay

showSubtrackColorOnUi on

shortLabel Avg Coverage CASEvCTRL

longLabel Mean Normalized Coverage (CASE red, CTRL blue)

boxedCgf on

autoScale on

visibility full

alwaysZero on

type bigWig

track CTRL_FWD_SUB

parent CASEvCTRL_wiggle

type bigWig

bigDataUrl trackFiles/CTRL.fwd.bw

color 0,0,180

altColor 0,0,180

track CTRL_REV_SUB

parent CASEvCTRL_wiggle

type bigWig

bigDataUrl trackFiles/CTRL.rev.bw

color 0,0,180

altColor 0,0,180

track CASE_FWD_SUB

parent CASEvCTRL_wiggle

type bigWig

bigDataUrl trackFiles/CASE.fwd.bw

color 180,0,0

altColor 180,0,0

track CASE_REV_SUB

parent CASEvCTRL_wiggle

type bigWig

bigDataUrl trackFiles/CASE.rev.bw

color 180,0,0

altColor 180,0,0
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The example trackDb file can be found here.
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13 The JctSeqData Package

A selection of the data generated and used in this walkthrough has been packaged and distributed in
the JctSeqData R package. The data had to be reorganized in order to fit with the R package format.
This section describes exactly how the JctSeqData package was generated.

First we copy over the template and add in the data generated in this walkthrough:

#make sure JctSeqData doesn't already exist:
rm -rf outputData/JctSeqData
#Copy over the template
cp -R inputData/JctSeqData-template outputData/JctSeqData
#Copy original annotation files:
cp inputData/annoFiles/*.* outputData/JctSeqData/inst/extdata/annoFiles/
#Copy additional generated annotation files:
cp outputData/forJunctionSeq.gff.gz \

outputData/JctSeqData/inst/extdata/annoFiles/JunctionSeq.flat.gff.gz
cp outputData/forDEXSeq.gff.gz \

outputData/JctSeqData/inst/extdata/annoFiles/DEXSeq.flat.gff.gz
cp outputData/countTables/orphanSplices.gff.gz \

outputData/JctSeqData/inst/extdata/annoFiles/
cp outputData/countTables/withNovel.forJunctionSeq.gff.gz \

outputData/JctSeqData/inst/extdata/annoFiles/
#Copy count tables:
cp -R outputData/countTables/* outputData/JctSeqData/inst/extdata/cts/
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Next we generate the ”tiny” dataset used in the JunctionSeq examples and for rapid testing. This
is done simply by using ”egrep” to extract a subset of the genes from the various files:

cd outputData/JctSeqData/inst/extdata/
#Make a "egrep" regex string to extract the desired genes:
FILTER="ENSRNOG00000048600|ENSRNOG00000045591|etc. etc.";
#Note: this is only the start of the full regex string.
# see file inputData/JctSeqData-template/inst/extdata/tinyGeneList.txt
# for a full list of the extracted genes.

#Subsample annotation files:
zcat annoFiles/anno.gtf.gz | \

egrep $FILTER - | \
gzip -c - > tiny/anno.gtf.gz

zcat annoFiles/JunctionSeq.flat.gff.gz | \
egrep $FILTER - | \
gzip -c - > tiny/JunctionSeq.flat.gff.gz

zcat cts/withNovel.forJunctionSeq.gff.gz | \
egrep $FILTER - | \
gzip -c - > tiny/withNovel.forJunctionSeq.gff.gz

zcat cts/withNovel.forJunctionSeq.gff.gz | \
egrep $FILTER - | \
gzip -c - > tiny/withNovel.forJunctionSeq.gff.gz

#Subsample count files:
while read line
do
mkdir ./tiny/$line
echo $line
zcat cts/$line/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz | \

egrep $FILTER - | \
gzip -c - > tiny/$line/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz

zcat cts/$line/QC.exonCounts.formatted.for.DEXSeq.txt.gz | \
egrep $FILTER - | \
gzip -c - > tiny/$line/QC.exonCounts.formatted.for.DEXSeq.txt.gz

zcat cts/$line/QC.geneCounts.formatted.for.DESeq.txt.gz | \
egrep $FILTER - | \
gzip -c - > tiny/$line/QC.geneCounts.formatted.for.DESeq.txt.gz

zcat cts/$line/QC.spliceJunctionAndExonCounts.forJunctionSeq.txt.gz | \
egrep $FILTER - | \
gzip -c - > tiny/$line/QC.spliceJunctionAndExonCounts.forJunctionSeq.txt.gz

zcat cts/$line/QC.spliceJunctionCounts.knownSplices.txt.gz | \
egrep $FILTER - | \
gzip -c - > tiny/$line/QC.spliceJunctionCounts.knownSplices.txt.gz

done < annoFiles/sampleID.list.txt
cd ../../../../
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We can install this almost-finished version of the package using the command:

R CMD INSTALL outputData/JctSeqData

Next, we build the serialized ”Rdata” files in R. To do this, first we load the datasets:

#Read the decoder:

decoder.file <- system.file("extdata/annoFiles/decoder.bySample.txt",

package="JctSeqData");

decoder <- read.table(decoder.file,

header=TRUE,

stringsAsFactors=FALSE);

#Here are the full-size count and gff files:

gff.file.FULL <- system.file("extdata/cts/withNovel.forJunctionSeq.gff.gz",

package="JctSeqData");

countFiles.FULL <- system.file(paste0("extdata/cts/",

decoder$sample.ID,

"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),

package="JctSeqData");

#Here are the "tiny" subset count and gff files:

gff.file.TINY <- system.file("extdata/tiny/withNovel.forJunctionSeq.gff.gz",

package="JctSeqData");

countFiles.TINY <- system.file(paste0("extdata/tiny/",

decoder$sample.ID,

"/QC.spliceJunctionAndExonCounts.withNovel.forJunctionSeq.txt.gz"),

package="JctSeqData");

geneID.to.symbol.file <- system.file(

"extdata/annoFiles/ensid.2.symbol.txt",

package="JctSeqData",

mustWork=TRUE);
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Next, we generate the full dataset:

jscs2 <- runJunctionSeqAnalyses(sample.files = countFiles,

sample.names = decoder$sample.ID,

condition=factor(decoder$group.ID),

flat.gff.file = gff.file,

gene.names = geneID.to.symbol.file);

And save it:

save(jscs2, file = "outputData/JctSeqData/data/fullExampleDataSet.RData");

And then generate the ”tiny” dataset:

jscs <- runJunctionSeqAnalyses(sample.files = countFiles.TINY,

sample.names = decoder$sample.ID,

condition=factor(decoder$group.ID),

flat.gff.file = gff.file.TINY,

gene.names = geneID.to.symbol.file);

And save it:

save(jscs, file = "outputData/JctSeqData/data/tinyExampleDataSet.RData");
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15 Legal

This document and related software is ”United States Government Work” under the terms of the
United States Copyright Act. It was written as part of the authors’ official duties for the United States
Government and thus cannot be copyrighted. This software is freely available to the public for use
without a copyright notice. Restrictions cannot be placed on its present or future use.

Although all reasonable efforts have been taken to ensure the accuracy and reliability of the software
and data, the National Human Genome Research Institute (NHGRI) and the U.S. Government does
not and cannot warrant the performance or results that may be obtained by using this software or
data. NHGRI and the U.S. Government disclaims all warranties as to performance, merchantability or
fitness for any particular purpose.

In any work or product derived from this material, proper attribution of the authors as the source
of the software or data should be made, using ”NHGRI Genome Technology Branch” as the citation.

NOTE: The QoRTs Scala package includes (internally) the sam-JDK library (sam-1.113.jar), from
picard tools, which is licensed under the MIT license:
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The MIT License

Copyright (c) 2009 The Broad Institute

Permission is hereby granted, free of charge, to any person

obtaining a copy of this software and associated documentation

files (the "Software"), to deal in the Software without

restriction, including without limitation the rights to use,

copy, modify, merge, publish, distribute, sublicense, and/or

sell copies of the Software, and to permit persons to whom the

Software is furnished to do so, subject to the following

conditions:

The above copyright notice and this permission notice shall be

included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES

OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT

HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,

WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING

FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR

OTHER DEALINGS IN THE SOFTWARE.

The MIT license and copyright information can also be accessed using the command:

java -jar /path/to/jarfile/QoRTs.jar "?" samjdkinfo

JunctionSeq is based on the DEXSeq and DESeq2 packages, and is licensed with the GPL v3 license:

JunctionSeq is free software: you can redistribute it and/or modify

it under the terms of the GNU General Public License as published by

the Free Software Foundation, either version 3 of the License, or

(at your option) any later version.

JunctionSeq is distributed in the hope that it will be useful,

but WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License

along with JunctionSeq. If not, see <http://www.gnu.org/licenses/>.

Other software mentioned in this document are subject to their own respective licenses.
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